扫一扫下载界面新闻APP

安防、教育、金融、自动驾驶,AI四大应用领域复盘:热度依旧,道阻且长

安防仍是AI落地场景中最重要的领域。

文|猎豹全球智库

《2019年政府工作报告》中连续第三年提到人工智能:“推动传统产业改造提升。打造工业互联网平台,拓展“智能+”,为制造业转型升级赋能。促进新兴产业加快发展。深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。”人工智能在传统产业改造提升和新兴产业(数字经济)加快发展中将扮演重要角色,像基础设一样推动新经济发展。

在应用层面,部分领域的人工智能技术或解决方案已经有较多渗透,改变着行业原本的模式,提升效率。其中安防、教育、金融、自动驾驶都是这两年被频繁提起的高热度领域。猎豹全球智库在《更要只争朝夕,人工智能的尴尬2019及破局2020 | 三大技术九大行业解析》对人工智能发展的整体观察中,也关注到了上述几个领域的人工智能应用情况。

尽管在2019年呈现的是,各行业、企业存在问题,尚未形成大规模的商业变现模式,但2020年,这几个领域依旧值得关注。比如在安防领域,巨头与行业玩家或许会结成联盟在红海市场中进行竞争;在自动驾驶领域,非载人的快递车、重型卡车、封闭场景的矿区和港口等会有更多进展,中国的自动驾驶未必完全聚焦在汽车而与智慧交通融合突破等。

我们将相关部分从报告中选摘出来,以方便感兴趣的读者。

智能安防:竞争激烈四大势力红海厮杀

安防仍是AI落地场景中最重要的领域。在计算机视觉的行业应用中,占据了 67.9% 的市场份额。

得益于国家在平安城市、天网工程、雪亮工程、智慧城市等计划的推动,安防行业总产值在过去十几年保持快速增长,到 2018 年已经达到 7183 亿元。

安防系统包括门禁系统、视频监控系统和报警系统。其中,视频监控是安防行业的主战场,占比超过 51%。

AI 在安防行业的主要应用场景包括:以图像识别为基础的人脸识别、车辆识别、人群与行为识别等。经过2018 、2019 年的加速落地,安防监控行业已经形成了四大类玩家:

1、以海康威视、大华、宇视科技为代表的传统安防巨头,正在从产品销售方到整体解决方案服务商转变,加大基础层、平台层和应用层的建设;

2、以商汤、旷视、依图为代表的新晋AI视觉公司,从AI 算法入手,丰富产品,提供端到端的产品和解决方案;

3、华为、腾讯、阿里等互联网巨头,也开始从后端向前端进军,全力推出人脸、车辆、视频存储等一系列产品和解决方案;

4、以机器人公司为代表的的新玩家。比如,优必选、国自机器人、深兰科技等,在物流、电力、汽车等行业提供安防巡检服务。

来源:猎豹全球智库

展望 2020 年,安防领域 AI 的价值会继续彰显。猎豹全球智库认为以下几个趋势可以关注:

1、行业竞争激烈,原有玩家拥抱新技术,新来者攻城略地,互联网巨头势头不减。在产业链条复杂的安防领域,并购、生态合作将成为未来几年的趋势。(比如阿里巴巴和宇视合作,佳都和华为合作,千视通与平安云联合等。)

2、软硬件一体化。在各家纷纷提供整体的解决方案之时,围绕行业客户提供软硬件一体的解决方案将成为 2020 年的方向。

3、随着各路竞争对手的进入,安防场景的毛利率将进一步被压缩,低毛利率将成为行业常态。

4、在国内场景完成技术积累后,全球化也将成为安防玩家的一大重要方向。

智能教育:AI+教育结合条件成熟商业化仍处于早期

传统教育领域一直存在三个明显的痛点:1、以老师为核心,师资资源分配不均;2、课堂趣味性不足,个性化教学难以实现,教学效率低下;3、家校信息不对称,学生安全等问题牵动家长的神经。

人工智能对教育的改善,也从以上三方面展开:

1、作为教学的辅助工作。通过语音语义识别、情绪识别、大数据分析、自适应技术等,为学校、老师、学生,提供更加有效率、个性化的教学和学习工具。

2、人工智能学科教育引入。包括编程教育、机器人教育、创客教育、VR/AR教育,基础知识培训。

3、利用人脸、指纹、虹膜等人工智能技术构建包括安防、社交、管理在内的智慧校园系统。

猎豹全球智库曾根据教育部发布的政策与投入经费预估,我国在教育信息化的投入将达到3600亿。政策、技术发展、市场规模等都为人工智能和教育的结合提供了条件。可以看到,2019 年不论是在线教育公司,人工智能企业,互联网巨头,都纷纷布局 AI+ 教育。

来源:猎豹全球智库

但AI+教育仍然需要面对一些重要挑战:

首先是数据道德与隐私问题。旷视就因为智慧校园的一个方案展示截屏饱受争议,如何在保障学生安全同时防止其隐私不受侵犯,给孩子们提供人性、个性化的教育,需要业内人士探索。

其次是形成更加完善的教学体系和商业化模式。人工智能和教育的结合仍然处于外围变革阶段,真正推动核心内圈创新,离不开更加完善的教学体系以及规模化的商业模式。

智慧金融:人工智能将降低金融服务门槛 促进金融的普惠性

金融行业是一个高度数据化的行业,与人工智能天然匹配。目前人工智能在金融行业的运用主要有人脸支付、量化投资、智能风控、智能投顾、智能客服等。

人工智能在金融领域的应用

来源:猎豹全球智库

其中针对量化投资,华夏基金总经理李一梅分析:传统的指数编制更多依赖企业财务报表等公开信息,对板块及行业进行归类,但是随着企业数据信息的迅速扩展,可获得的信息源也更加广泛,基于语音识别、机器学习等人工智能算法开始应用于指数编制或者策略开发,并形成了相关策略特色的ETF产品。

来源:猎豹全球智库

人工智能在金融应用上的主要参与方为互联网科技巨头、金融科技集团及人工智能技术提供方。

关于人工智能在金融领域的发展趋势,猎豹全球智库认为,主要体现在以下两个方面:

1、从趋势上看,未来新技术不断渗透将推动金融行业普惠化;

2、强化科技监管将成为规范金融行业未来发展的必然选择,例如对于人脸支付的法律法规监管问题近来一直被市场所热议。

自动驾驶:冰火两重 道阻且长

自动驾驶已被证明是一个非常复杂的系统性工程,仅技术层面就涉及雷达感知、高精度地图、定位、路径规划、决策、动态控制、系统架构、系统验证等十多项核心能力,此外还需要法律法规、城市规划等方面的支持,以及巨额的资金投入。但仍不能阻挡其在过去一年中获得了全球AI投资的最大份额(77亿美元)。

来源:公开信息

1、技术实力:中国难以挑战美国霸主地位 中国百度领跑

2019年从技术角度说对于自动驾驶来说是平淡的一年,无论是算法和硬件都没有什么突破性的改变。从地区上看,美国、中国和欧洲为全球研发及应用“重镇”。著名研究机构 Navigant research 的2019自动驾驶竞争力排行榜中,百度是唯一一个上榜的中国公司。在另一份报告中,欧洲地区提交的自动驾驶专利,仅有3%来自于中国。在自动驾驶技术上,中国想要挑战美国的地位,还有很长一段路要走。

来源:Navigant research

2、自动驾驶中国落地:政府很积极,企业实施难

与其它AI技术相比,自动驾驶技术的落地相对来说会更谨慎也更窄。2019 年,是 L2(部分自动驾驶)/L3(有条件自动驾驶)的高光时刻,整车企业都在探索汽车更多的智能化,搭载ADAS(高级驾驶辅助系统)。而L4以上的自动驾驶不需要驾驶员,这无论在技术上、法规上、伦理上都难以短期实现。

宣称L4级别的公司

来源:猎豹全球智库

在中国,很多城市在积极探索自动驾驶试点,并发放相关的牌照。值得一提的是今年武汉颁发了全球首个商业牌照,这意味着无人驾驶车辆不仅可在开放道路进行载人测试,也可进行商业化运营探索。从企业来说,百度Apollo自动驾驶路测牌照总数达 150 张,占中国全部获批自动驾驶路测牌照一半以上,其中 80 张牌照已经允许载人测试。

来源:猎豹全球智库

来源:猎豹全球智库

但中国似乎在实施另外一条路:不再训练自动驾驶汽车在现有的城市环境中进行导航,而是对现有城市进行数字化改造,以适应并促进自动驾驶技术的发展。这被称为“智能城市”建设,包括路边传感器设备的完善,这些传感器会根据导航提示(例如车道变化和限速牌)传递更丰富的道路信息。(吴恩达团队盘点)

3.融资数下降,但资金正向头部企业聚拢

融资则是冰火两重天。数据显示,中国自动驾驶领域2019年比2018年融资数量下降了36%,但总融资额却上升了26%,而且在单个项目中不乏数亿美元的融资额度。这说明自动驾驶领域的风险投资逐渐向优质的头部企业聚拢,光靠一个Demo就能融钱的时代已经过去。

数据来源:IT桔子,猎豹全球智库分析整理

融资额大的项目很多是短时间内可以实现自动驾驶大规模落地的市场——自动驾驶商用车,如无人驾驶卡车、无人驾驶物流车、无人驾驶摆渡车等。与自动驾驶乘用车相比,这些车辆由于运营环境相对较简单,且大部分场景对车辆的运行速度要求不高,运行线路较固定,更容易实现规模化落地,让投资者早日看到回报。

来源:猎豹全球智库

4、2019年自动驾驶为何面临窘境?

(1)发展中的技术瓶颈:自动驾驶底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题逐渐成了制约发展的关键。这些问题包括各种零碎的场景、极端情况和无法预测的人类行为。

(2)受制于政策法律和伦理,无人驾驶也许是AI各技术中最难以得到推进的一个。目前无人驾驶汽车事故责任划分规则仍未出台。而项目周期长、应用场景窄,让投资人没有耐心等到下一个接盘者。

5、2020年的自动驾驶行业会怎样?

(1)行业将继续洗牌。从大环境看,资本向头部企业靠拢的趋势还会继续,技术开发能力不够,无法落地的项目必将被清盘。

(2)将寻找更多的落地场景。突破口应在简单场景的公交车、出租车,非载人的快递车、重型卡车、封闭场景的矿区和港口等地。这场景在落地难度和政策上的门槛都更小。

(3)致命事故的发生,此类黑天鹅事件是自动驾驶行业的最大变量。

因此 ,对于自动驾驶行业,业界的普遍共识是,要实现L5级要到2030年甚至2040年,自动驾驶汽车即将进入 10-20 年混合模式的时代,自动驾驶技术的成熟和真正载人的落地应用,道阻且长。

未经正式授权严禁转载本文,侵权必究。
表情
您至少需输入5个字

评论 0

相关文章

推荐阅读